Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Malária Falciparum/parasitologia , Animais , Lectinas/metabolismo , Lectinas/genética , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Ligação Proteica
2.
mBio ; 13(4): e0194822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35950755

RESUMO

The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation.


Assuntos
Malária Falciparum , Parasitos , Animais , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Merozoítos , Parasitos/genética , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Esquizontes/genética , Transcriptoma
3.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500341

RESUMO

Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.


Assuntos
Adenosina Trifosfatases/metabolismo , GMP Cíclico/biossíntese , Eritrócitos/parasitologia , Guanilato Ciclase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , GMP Cíclico/genética , Guanilato Ciclase/genética , Humanos , Malária/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Domínios Proteicos , Proteínas de Protozoários/genética
4.
Curr Opin Microbiol ; 58: 69-74, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33032143

RESUMO

Cyclic adenosine monophosphate (cAMP) is an important signalling molecule across evolution, but until recently there was little information on its role in malaria parasites. Advances in gene editing - in particular conditional genetic approaches and mass spectrometry have paved the way for characterisation of the key components of the cAMP signalling pathway in malaria parasites. This has revealed that cAMP signalling plays a critical role in invasion of host red blood cells by Plasmodium falciparum merozoites through regulating the phosphorylation of key parasite proteins by the cAMP-dependent protein kinase (PKA). These insights will help us to investigate parasite cAMP signalling as a target for novel antimalarial drugs.


Assuntos
AMP Cíclico/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
5.
PLoS One ; 15(7): e0235798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673324

RESUMO

During the course of the asexual erythrocytic stage of development, Plasmodium spp. parasites undergo a series of morphological changes and induce alterations in the host cell. At the end of this stage, the parasites egress from the infected cell, after which the progeny invade a new host cell. These processes are rapid and occur in a time-dependent manner. Of particular importance, egress and invasion of erythrocytes by the parasite are difficult to capture in an unsynchronized culture, or even a culture that has been synchronized within a window of one to several hours. Therefore, precise synchronization of parasite cultures is of paramount importance for the investigation of these processes. Here we describe a method for synchronizing Plasmodium falciparum and Plasmodium knowlesi asexual blood stage parasites with ML10, a highly specific inhibitor of the cGMP-dependent protein kinase (PKG) that arrests parasite growth approximately 15 minutes prior to egress. This inhibitor allows parasite cultures to be synchronized so that all parasites are within a window of development of several minutes, with a simple wash step. Furthermore, we show that parasites remain viable for several hours after becoming arrested by the compound and that ML10 has advantages, owing to its high specificity and low EC50, over the previously used PKG inhibitor Compound 2. Here, we demonstrate that ML10 is an invaluable tool for the study of Plasmodium spp. asexual blood stage biology and for the routine synchronization of P. falciparum and P. knowlesi cultures.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo
6.
mBio ; 11(1)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098816

RESUMO

The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the µ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2µ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2µ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2µ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2µ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the µ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/metabolismo , Clatrina/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Esquizontes/efeitos dos fármacos , Esquizontes/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Resistência a Medicamentos , Endocitose/fisiologia , Técnicas de Inativação de Genes , Proteínas de Membrana/metabolismo , Organismos Geneticamente Modificados , Plasmodium falciparum/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esquizontes/genética
7.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239348

RESUMO

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Malária/genética , Plasmodium falciparum/química , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/ultraestrutura , Humanos , Cinética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica
8.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075098

RESUMO

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Assuntos
AMP Cíclico/metabolismo , Interações Hospedeiro-Parasita , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Parasitos/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Parasitos/ultraestrutura , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
9.
PLoS Biol ; 17(2): e3000154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794532

RESUMO

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase ß (PDEß) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEß-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEß plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hidrólise , Merozoítos/enzimologia , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Fosfoproteínas/classificação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Esquizontes/enzimologia , Esquizontes/genética , Esquizontes/crescimento & desenvolvimento , Fatores de Tempo
10.
Open Biol ; 7(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29263246

RESUMO

The cyclic nucleotides 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Plasmodium/metabolismo , Transdução de Sinais , Proteínas Quinases Reguladas por Nucleotídeo Cíclico/genética , Proteínas Quinases Reguladas por Nucleotídeo Cíclico/metabolismo , Estágios do Ciclo de Vida , Plasmodium/crescimento & desenvolvimento , Plasmodium/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Malar J ; 15: 229, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098483

RESUMO

BACKGROUND: Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood. METHODS: Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4. These lines were used in the recent detection of the PF3D7_1222600 locus (encoding PfAP2-G), which acts as a genetic master switch that triggers gametocyte development. RESULTS: The evolutionary changes from the 3D7 parental strain through its derivatives F12 (culture-passage derived cloned line) and A4 (transgenic cloned line) were identified. The genetic differences including the formation of chimeric var genes are presented. CONCLUSION: A genomics resource is provided for the further study of gametocytogenesis or other phenotypes using these parasite lines.


Assuntos
Gametogênese , Genoma de Protozoário , Plasmodium falciparum/fisiologia , Polimorfismo Genético , Plasmodium falciparum/genética , Análise de Sequência de DNA
12.
Nat Commun ; 6: 7285, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149123

RESUMO

Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Plasmodium falciparum/enzimologia , Proteômica/métodos , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Eritrócitos/fisiologia , Regulação Enzimológica da Expressão Gênica , Fosfoproteínas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esquizontes/fisiologia
13.
PLoS Pathog ; 11(2): e1004639, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25646845

RESUMO

The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is a key regulator across the malaria parasite life cycle. Little is known about PfPKG's activation mechanism. Here we report that the carboxyl cyclic nucleotide binding domain functions as a "gatekeeper" for activation by providing the highest cGMP affinity and selectivity. To understand the mechanism, we have solved its crystal structures with and without cGMP at 2.0 and 1.9 Å, respectively. These structures revealed a PfPKG-specific capping triad that forms upon cGMP binding, and disrupting the triad reduces kinase activity by 90%. Furthermore, mutating these residues in the parasite prevents blood stage merozoite egress, confirming the essential nature of the triad in the parasite. We propose a mechanism of activation where cGMP binding allosterically triggers the conformational change at the αC-helix, which bridges the regulatory and catalytic domains, causing the capping triad to form and stabilize the active conformation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estágios do Ciclo de Vida/fisiologia , Merozoítos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Immunoblotting , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Transfecção
14.
Antimicrob Agents Chemother ; 59(5): 2540-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691625

RESUMO

The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Quinina/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , DNA Complementar , Fases de Leitura Aberta/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
Cell Host Microbe ; 16(2): 148-150, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121742

RESUMO

Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.


Assuntos
Antígenos de Protozoários/imunologia , Proteínas Cromossômicas não Histona/fisiologia , Histona Desacetilases/fisiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Homólogo 5 da Proteína Cromobox , Humanos
16.
Genome Biol ; 13(11): R108, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23181666

RESUMO

BACKGROUND: The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS: We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION: Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.


Assuntos
Proteínas Nucleares/isolamento & purificação , Plasmodium falciparum/metabolismo , Proteômica/métodos , Proteínas de Protozoários/isolamento & purificação , Núcleo Celular/metabolismo , Cromatografia Líquida/métodos , Eritrócitos/parasitologia , Humanos , Espectrometria de Massas/métodos , Proteínas Nucleares/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo
17.
PLoS One ; 7(11): e48206, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139764

RESUMO

Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP) exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG) has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG) is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG) has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA), maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER) was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Biomarcadores/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/farmacologia , Esquizontes/efeitos dos fármacos , Esquizontes/metabolismo , Solubilidade , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Fatores de Tempo
18.
Cell Microbiol ; 14(12): 1836-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22891919

RESUMO

Plasmodium falciparum is responsible for the most severe form of malaria in humans. Antigenic variation of P. falciparum erythrocyte membrane protein 1 leads to immune evasion and occurs through switches in mutually exclusive var gene transcription. The recent progress in Plasmodium epigenetics notwithstanding, the mechanisms by which singularity of var activation is achieved are unknown. Here, we employed a functional approach to dissect the role of var gene upstream regions in mutually exclusive activation. Besides identifying sequence elements involved in activation and initiation of transcription, we mapped a region downstream of the transcriptional start site that is required to maintain singular var gene choice. Activation of promoters lacking this sequence occurs no longer in competition with endogenous var genes. Within this region we pinpointed a sequence-specific DNA-protein interaction involving a cis-acting sequence motif that is conserved in the majority of var loci. These results suggest an important role for this interaction in mutually exclusive locus recognition. Our findings are furthermore consistent with a novel mechanism for the control of singular gene choice in eukaryotes. In addition to their importance in P. falciparum antigenic variation, our results may also help to explain similar processes in other systems.


Assuntos
Variação Antigênica , DNA de Protozoário/metabolismo , Regulação da Expressão Gênica , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/biossíntese , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Protozoários/genética , Transcrição Gênica
19.
Cell Microbiol ; 14(9): 1391-401, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22507744

RESUMO

Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.


Assuntos
Centrômero/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Plasmodium falciparum/fisiologia , Citocinese , DNA de Protozoário/química , DNA de Protozoário/genética , Microscopia de Fluorescência , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA
20.
PLoS Pathog ; 6(2): e1000784, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195509

RESUMO

The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.


Assuntos
Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Regulação da Expressão Gênica/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Southern Blotting , Western Blotting , Imunoprecipitação da Cromatina , Homólogo 5 da Proteína Cromobox , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Genes de Protozoários , Heterocromatina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...